Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Chem ; 16(1): 32, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568901

RESUMO

PURPOSE: The Pharmacy Service of the Infanta Leonor University Hospital acquires, compounds, distributes and dispenses more than 3000 L of methadone oral solution to Drug Addiction Patients Centers per year. Our purpose is to develop and validate an improved high performance liquid chromatography (HPLC) method to quantify methadone hydrochloride in a new oral solution with methylhydroxybenzoate (methylparaben) and propylhydroxybenzoate (propylparaben) to be implemented in physicochemical stability studies that allow to provide more information and even to increase the beyond-use date. METHODS: A HPLC-Agilent® 1100 equipment, comprising a quaternary pump and an ultraviolet diode-array-detector (DAD) was used. An analytical method development and validation was completed. The curve was constructed from methadone working concentrations of 75-125% (7.5, 9.0, 10.0, 11.0 and 12.5 mg/mL) to assess the linear relationship between the concentration of the analyte and the obtained areas. Precision and accuracy were calculated. Detection and quantification limit (LD, LQ) were estimated using the EURACHEM method. Forced-degradation studies were also performed. RESULTS: Chromatographic conditions were: flow rate 1.6 mL/min; mobile phase 55% acetonitrile and 45% sodium phosphate 25 mM (pH = 10); injection volume was 5 µL. The column was a Waters-XTerra™ RP18, maintained at 40 °C. DAD was λ = 254 nm. Retention times for methadone, methylparaben and propylparaben were 4.34, 0.70 and 0.88 min respectively. The method was linear (y = 284.3x - 97.8, r = 0.996). Instrumental precision was 0.33% for standards (n = 10); intra-assay precision 0.53% (n = 6) and inter-assay precision 1.95% (n = 12). The relative standard deviation percentage for accuracy was 1.28%. The recovery percentage was 101.5 ± 1.5%. LQ and LD were 2.18 µg/mL and 2.0 µg/mL respectively. The most destabilizing conditions were oxidizing and alkaline. The chromatograms confirmed no interference with the methadone signal. CONCLUSIONS: The HPLC method has proved to be valid and reproducible for methadone quantification in a new oral solution with methylparaben and propylparaben. This assay is a rapid, simple and reliable technique that can be used in daily analysis and physicochemical stability studies.

2.
J Pharm Biomed Anal ; 153: 44-56, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29459235

RESUMO

The optic nerve is made of highly specialized neurons and the energetic supply to their axons is crucial due to their great demand. The energy comes basically through the oxidative phosphorylation in the mitochondria, supported by glial cells metabolism. Mitochondrial dysfunction is a shared feature encountered within the optic neuropathies, including Leber's Hereditary Optic Neuropathy, Leigh's Syndrome, or Kjer's syndrome. In an effort to investigate the metabolic alterations produced within the optic nerve in a mutant mouse model of Neurological Visual Disease (NVD), a rapid, robust, and efficient one-single phase extraction methodology has been developed and validated for the GC-MS platform. Once the method was successfully validated for lactic acid and pyruvic acid as markers of an adequate optic nerve function, the protocol was applied to unveil the metabolomic signature of the wild-type mouse optic nerve. Along the chromatographic profile of the optic nerve, 94 peaks were identified and, to our knowledge, for the first time. Afterwards, a targeted metabolomics analysis was performed to quantify lactic acid and pyruvic acid in the NDV mice group (n = 8) and its corresponding wild-type (n = 8). Finally, an untargeted metabolomic study was carried out and univariate and multivariate data analyses showed 34 compounds modified in the optic nerve of the mouse with NVD mutation. Then, the metabolic reaction network of the identified metabolites highlighted alterations in the catabolism of proteins, TCA cycle, and urea cycle, reflecting a mitochondrial energetic dysfunction. Taken together, this metabolomic study has proven to be suited for the study of optic neuropathies.


Assuntos
Olho/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Doenças do Nervo Óptico/metabolismo , Nervo Óptico/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Ácido Láctico/metabolismo , Masculino , Camundongos , Ácido Pirúvico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...